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IMPORTANCE For the large population of people with drug-refractory epilepsy, alternative
treatment approaches are needed. Clinical trial outcomes of a novel stimulation device, which
is newly available in Europe for the treatment of patients with a predominant seizure focus,
are reported for the first time.

OBJECTIVE To perform a pooled analysis of the results of 2 prospective, multicenter,
single-arm trials, A Pilot Study to Assess the Feasibility of Neurostimulation With the EASEE
System to Treat Medically Refractory Focal Epilepsy (EASEE II) and A Pilot Study to Assess the
Feasibility of Patient-Controlled Neurostimulation With the EASEE System to Treat Medically
Refractory Focal Epilepsy (PIMIDES I), assessing the safety and efficacy of epicranial focal
cortex stimulation (FCS) with a novel implantable device (EASEE [Precisis]) as adjunctive
treatment for adult patients with drug-refractory focal epilepsy.

DESIGN, SETTING, AND PARTICIPANTS This study was a pooled analysis of 2 nonrandomized
uncontrolled trials, EASEE II and PIMIDES I, which began on January 15, 2019, and January 14,
2020, respectively, and ended on July 28, 2021. EASEE II and PIMIDES I were the first
in-human, prospective, single-arm trials with an 8-month evaluation period. Patients were
recruited at 7 European epilepsy centers. Consecutive participants with drug-refractory
focal epilepsy were enrolled. Study data were analyzed from September 29, 2021,
to February 2, 2022.

INTERVENTIONS After a 1-month prospective baseline period, patients were implanted with
the neurostimulation device. After a 1-month postimplantation recovery period, unblinded
FCS was activated using both high-frequency and direct current (DC)–like components
performed via electrode arrays placed epicranially above the individual epileptic focus region.

MAIN OUTCOMES AND MEASURES Efficacy was prospectively assessed by the responder rate
in the sixth month of stimulation compared with baseline; safety and additional end points
were assessed after device implantation and during the stimulation period.

RESULTS Of the 34 adult patients enrolled at 6 German and 1 Belgian investigational site,
33 (mean [SD] age, 34.6 [13.5] years; 18 male patients [54.5%]) received the neurostimulation
device implant. A total of 32 patients underwent combined high-frequency direct current–like
stimulation at least until the 8-month postimplant follow-up visit. After 6 months of
stimulation, 17 of 32 patients (53.1%) were responders to treatment with at least a 50%
reduction in seizure frequency compared with baseline, corresponding to a significant
median seizure reduction by 52% (95% CI, 0.37%-0.76%; P < .001). No device- or
procedure-related serious adverse events were reported (0; 95% CI, 0%-10.58%). There
were no significant alterations in cognition, mood, or overall quality of life.

CONCLUSIONS AND RELEVANCE Results of this pooled analysis of 2 nonrandomized
uncontrolled trials suggest that FCS with a novel neurostimulation device was associated with
an effective reduction in seizure frequency in patients with drug-refractory focal epilepsy and
may offer a promising treatment option for patients with a predominant epileptic focus.

TRIAL REGISTRATION German Clinical Trials Register: DRKS00015918 and DRKS00017833,
respectively, and jointly under PROSPERO: CRD42021266440
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E pilepsy is one of the most common neurologic disor-
ders, affecting approximately 1% of the world’s
population.1 Despite the availability of new antisei-

zure medications (ASMs), more than one-third of patients with
epilepsy do not sufficiently respond to drug therapy,2 particu-
larly those with focal epilepsy. Many of these patients are not
eligible for epilepsy surgery; thus, alternative treatment strat-
egies are urgently needed. Neuromodulation using electrical
brain stimulation either in the periphery or directly targeted
to the brain via implanted electrodes has been shown to be an
effective tool to reduce seizure burden,3 both with interfer-
ence at a thalamic network hub4 or with direct stimulation of
the epileptogenic brain area.5 Furthermore, both direct cur-
rent (DC) stimulation6 and alternating current (AC) stimulation7

of the epileptic focus have been reported to reduce seizure
frequency.

This article presents the results of a participant-level pooled
analysis including 2 prospective pilot clinical trials on a novel
epicranial neurostimulation device with a specially designed
electrode placed epicranially over the epileptic focus region.
This concept is referred to as focal cortex stimulation (FCS).
Using a combination of 2 stimulation modes (high-frequency
stimulation [HFS]; direct current–like stimulation [DLS]), the
neurostimulation device aims at modulating epileptic activ-
ity at the origin of ictal discharges. The pooled analysis pro-
tocol was fixed prior to obtaining results from the clinical
efficacy studies, defining the percentage of responders to the
novel device as a primary end point.

Methods
Study Design
This was a pooled analysis of 2 nonrandomized uncontrolled
trials: A Pilot Study to Assess the Feasibility of Neurostimula-
tion With the EASEE System to Treat Medically Refractory
Focal Epilepsy (EASEE II) and A Pilot Study to Assess the
Feasibility of Patient-Controlled Neurostimulation With the
EASEE System to Treat Medically Refractory Focal Epilepsy
(PIMIDES I), which began on January 15, 2019, and January 14,
2020, respectively, and ended on July 28, 2021 (Supple-
ment 1). EASEE II and PIMIDES I are prospective, interven-
tional, unblinded, multicenter pilot studies using the EASEE
System (Precisis GmbH), an innovative neuromodulation
method for patients with drug-refractory focal epilepsy.
Study designs and patient recruitment were almost identical
for both trials (Figure 1A)8,9 and were described previously
(Supplement 2 and Supplement 3).10 After assuring the feasi-
bility of data pooling and finalization of the meta-analysis
protocol, a participant-level meta-analysis project was pro-
spectively defined to consider all clinical data available from
both trials on the safety and performance of the neurostimu-
lation device, based on the fact that the studies were homo-
geneous in terms of focal epilepsy and drug resistance of par-
ticipants, interventions, and assessed outcomes.

The study protocols were approved by the ethics commit-
tees of all participating investigational sites and by the com-
petent authorities in Germany (6 sites) and Belgium (1 site). All

patients provided written consent to participate in the study.
Both studies were registered in the German Clinical Trials
Register and their meta-analysis under PROSPERO. This study
followed the clinical investigation guidelines from the Euro-
pean Medical Device Regulation 2017/745.

Participants
Eligible patients were aged 18 to 75 years, with focal-onset sei-
zures uncontrolled by at least 2 ASMs. In addition, patients had
3 or more seizures per month and a predominant epileptic
focus that was temporolateral or extratemporal in origin.
No invasive recordings were required for focus localization.
Patients were not included if they had mesiotemporal or pri-
mary generalized epilepsy. In the PIMIDES I trial, patients had
to have 1 seizure type with an initial aware phase during which
ictal stimulation could be triggered. Further eligibility crite-
ria have been described10 and are available in the eMethods
of Supplement 4.

Procedures
Patients fulfilling inclusion criteria and prospective baseline
seizure frequency assessment were implanted under general
anesthesia with a neurostimulation system consisting of a pulse
generator and a stimulation electrode. This system delivers
FCS via the stimulation electrode implanted epicranially above
the individual epileptic focus region (Figure 1B) and con-
nected to a pulse generator implanted subcutaneously in the
pectoral region. Stimulation was activated 1 month after im-
plantation to separate possible surgery-associated outcomes
from stimulation outcomes.

After a 1-month recovery period, stimulation was initi-
ated with intermittent bursts of 100-Hz HFS performed every
2 minutes combined with 20 minutes of continuous cathodal
DLS per day, with the central electrode acting as a cathode
(Figure 1C). The stimulation amplitude was set below the in-
dividual perception threshold, up to a maximum of 4 mA, and
could be adjusted as needed during the follow-up visits. Stimu-
lation settings were kept constant during the 6 months evalu-
ated except for minor adaptations to ensure that patients did
not perceive the stimulation. In the PIMIDES I trial, patients
could trigger additional pulses of HFS from 10 seconds to

Key Points
Question Is long-term treatment using epicranial electrical focal
cortex stimulation associated with a reduction in seizure
frequency in drug-refractory focal epilepsy?

Findings In 2 nonrandomized trials, 33 adult participants with
uncontrolled unifocal epilepsy were implanted with a pulse
generator and an electrode array placed above the individual focus
region without experiencing device- or procedure-related serious
adverse events. A pooled analysis showed a 52% reduction in
seizure frequency and at least a 50% response in the sixth month
of neurostimulation compared with the prospective baseline.

Meaning Results suggest that focal cortex stimulation with an
epicranial electrode array may offer a safe and effective new
treatment option for patients with drug-refractory focal epilepsy.
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Figure 1. Trial Design, Neurostimulation Device Lead and Stimulation Modes, and Electrode Localization
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A, Trial time line for the A Pilot Study to Assess the Feasibility of
Neurostimulation With the EASEE System to Treat Medically Refractory Focal
Epilepsy (EASEE II) and A Pilot Study to Assess the Feasibility of
Patient-Controlled Neurostimulation With the EASEE System to Treat Medically
Refractory Focal Epilepsy (PIMIDES I) studies. B, The neurostimulation device
consists of a lead placed epicranially above the respective epileptic focus and
connected to the pulse generator in the chest. The lead includes a 5-channel
pseudo-Laplace electrode (a central electrode surrounded by 4 peripheral
electrodes; total diameter, 77 mm) and a connecting cable. C, Device
stimulation modes are direct current–like stimulation (DLS; cathodal pulses of 2
mA, duration 20 milliseconds, with equilibrating pulses of 100-milliseconds’

duration for 20 minutes per day), high-frequency stimulation (HFS; bursts of 4
mA, rectangular biphasic symmetric, at 100 Hz, pulse width 160 microseconds;
trains of 500-milliseconds’ duration applied every 2 minutes), and on-demand
patient-controlled neurostimulation (PCN) for 10 seconds to 60 seconds
according to settings (available to PIMIDES I cohort). Stimulation intensity was
based on finite element method modeling and experimental data from Liu et al8

(repetitive direct-current stimulation available in Lu et al9). D, Implantation of
the device electrode was tailored to each patient and placed above the
respective epileptic foci. Shown here is the distribution of electrode locations in
the study population, projected to the right hemisphere.
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60 seconds via a handheld device when they perceived early
ictal symptoms,10 thereby not affecting the seizure count
(primary pooled analysis outcome measure).

Outcomes
Patients recorded seizures in study-specific diaries. Data were
collected at each study visit until the 8-month postimplant
follow-up visit, which ensured the availability of a full data
set for the sixth month of stimulation. Patients were also
asked to complete the Quality of Life in Epilepsy–Problems
(QOLIE-31-P11) questionnaire, the Seizure Severity Question-
naire (SSQ12), and the Neurological Disorders Depression
Inventory for Epilepsy (NDDI-E13). In addition, participant neu-
rocognition was monitored with the EpiTrack (Eisai) screen-
ing tool.14,15 All assessments were performed prior to implan-
tation and at prespecified follow-up visits.

Adverse events (AEs) were evaluated by the investigators
as either associated with or not associated with the device
and/or procedure and were coded according to Medical Dic-
tionary for Regulatory Activities, or MedDRA, coding system.
Any serious AE (SAE) was reviewed by an independent data
safety and monitoring board. The AE data presented in this
article encompass the period from implantation to 8-month
postimplant follow-up of each patient.

Statistical Analysis
Sample size, based on the 2 first in-human trials, was to in-
clude at least 30 participants. A prospective power calcula-
tion for the pooled analysis was performed. For the primary
end point, treatment response was defined as a 50% reduc-
tion in seizure frequency. For a sample size of 30 partici-
pants, a 2-sided 95% CI for the proportion of treatment re-
sponders will extend 0.168, ie, 16.8% if the expected proportion
of treatment responders is 0.33 (95% CI, 0.16-0.50). nQuery
Advisor, version 8.3.1.0 (Statsols) was used for these calcula-
tions. Handforth et al11 reported a 16% response rate in the low-
stimulation group.11 The prospectively defined primary effi-
cacy end point of the pooled analysis was the responder rate,
defined as a reduction of seizure frequency of at least 50% be-
tween the sixth month of stimulation and the prospective base-
line. All patients in whom stimulation was activated were part
of the efficacy analysis. Efficacy of stimulation was based on
(1) the estimate of the seizure frequency reduction before and
after stimulation in this single-arm trial and (2) a comparison
with a historical low-stimulation (sham) group reported for
vagus nerve stimulation (VNS).16 Secondary outcomes in-
cluded reduction in seizure frequency, seizure severity, health-
related quality of life, and treatment safety. All patients im-
planted with the neurostimulation device were part of safety
analyses.

As single-arm studies were included, no further aspects
for combining different types of studies had to be consid-
ered. Seizure frequency was analyzed via the monthly (de-
fined as 30 days) seizure count for each participant and cal-
culated from the seizure diary. A mixed-effects Poisson
regression model was used to analyze the monthly seizure
counts, including all seizure count measurements postbase-
line, with the study center as a covariate and a random-

participant effect. The responder rate was given with the cor-
responding 95% CI. Safety end points of the pooled analysis
were summarized with corresponding exact 1-sided 95% CIs
based on a binominal distribution. Further safety outcomes in-
cluded the global incidence of AEs and device- or procedure-
associated outcomes. Baseline characteristics and secondary
end points were evaluated descriptively. Statistical analysis
was performed from February to September 2021, using SAS,
version 9.2 (SAS Institute) or later versions.

Results
Study Population
A total of 34 patients were enrolled at 6 German and 1 Belgian
investigational site in the EASEE-II and PIMIDES-I trials from
January Day, 2019, to November Day, 2020, and 33 (mean [SD]
age, 34.6 [13.5] years; 18 male patients [54.5%]; 15 female pa-
tients [45.5%]) received the neurostimulation device implant
(Figure 2). These 33 patients are considered to be the full analy-
sis set of the pooled analysis in this study; individual trial
results are available in eTables 1, 2, and 3 in Supplement 4.

Demographics for the patients who received the implant
are shown in Table 1. The 33 patients had background treat-
ment with 2 to 7 ASMs, of a spectrum of 13 different ASMs with
different mechanisms of action. The most common ASMs were
lamotrigine (16), brivaracetam (13), levetiracetam (9), and per-
ampanel (6). Etiologies included malformations of cortical

Figure 2. Study Flow Diagram

34 Patients enrolled

1 Excluded because they declined 
to participate

15 From EASEE II
19 From PIMIDES I

33 Implanted with EASEE system
15 From EASEE II
19 From PIMIDES I

1 Discontinued intervention 
(explanted before activation of 
stimulation) 

32 Received neurostimulation at least 
up to 8-mo follow-up

33 Included in safety end point 
analysis
15 From EASEE II
18 From PIMIDES I

32 Included in efficacy end point 
analysis
15 From EASEE II
17 From PIMIDES I

EASEE II indicates A Pilot Study to Assess the Feasibility of Neurostimulation
With the EASEE System to Treat Medically Refractory Focal Epilepsy;
PIMIDES I, A Pilot Study to Assess the Feasibility of Patient-Controlled
Neurostimulation With the EASEE System to Treat Medically Refractory
Focal Epilepsy.
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development (focal cortical dysplasia, heterotopias, polymi-
crogyria), postinflammatory and posttraumatic lesions, intra-
cranial bleeding, and nonlesional cases with unknown etiol-
ogy. Implantation sites included all brain regions on the
dorsolateral convexities (Figure 1D). Twenty of 33 patients
(60.6%) had placement of a left-sided implant.

Thirty-two of 33 patients who received implants under-
went combined HFS and DLS stimulation at least until the
8-month postimplant follow-up. In 1 patient, the stimulation
was not activated due to the presence of other metal im-
plants in the skull. Intensities applied were set below the in-
dividual perception threshold. HFS was configured to a mean
(SD) amplitude of 3.51 (0.68) mA and DLS to a mean (SD) am-
plitude of 1.58 (0.61) mA.

Efficacy
The results of the study suggest that neurostimulation with
the novel neurostimulation device was associated with an ef-
fective reduction in seizures in patients with drug-refractory
focal epilepsy. The primary outcome of the pooled analysis was

a responder rate of 53.1% (17 of 32 patients) in the sixth month
of stimulation compared with the baseline month (95% CI,
34.7%-70.9%). The lower limit of the CI lies entirely above the
16% response rate observed by Handforth et al16 in the low-
stimulation group. Four of 32 patients (12.5%) had no sei-
zures in the sixth month of active stimulation (Figure 3A). The
responder rate increased throughout the study period, and all
early responders during the first 3 months of FCS treatment
(6 [18.8%]) remained responders in the subsequent 3 months.
Furthermore, a mixed-effects Poisson regression model analy-
sis of the monthly seizure count showed a statistically signifi-
cant reduction in seizure frequency in the sixth month of
stimulation by 52% (95% CI, 0.37%-0.76%; P < .001) com-
pared with the prospective baseline.

Seizure frequency was largely unaffected by the device im-
plantation procedure; the median seizure frequency gradu-
ally decreased to 52% in the sixth month of stimulation
(Figures 3B and C). Changes in drug treatment did not ex-
plain treatment efficacy. The mean (SD) daily defined dosage
of ASM17 was 4.1 (1.8) at baseline and 4.2 (1.8) during the sixth
month of outcome assessment. Ictal stimulation was applied
in 16 of 17 patients (94.1%) from the PIMIDES I trial, contrib-
uting to a median 0.3% of the total AC stimulation duty cycle.
At a group level, no changes from baseline were observed in
seizure severity as assessed by the SSQ or in quality of life as
indexed by the QOLIE-31-P scores.

Safety
All patients who started neurostimulation continued treat-
ment until the last follow-up. There were no deaths, and
no AEs leading to discontinuation of treatment. In total,
11 SAEs were reported in 7 of 33 patients (21.1%) during
the first 8 months. None of the 11 SAEs were considered to be
associated with the device or procedure. At 4 months after
device implantation, the absence of device- or procedure-
associated SAEs was within a 95% CI of 0% to 10.58%.

Two patients (6.1%) experienced status epilepticus dur-
ing the trial: 1 in a patient with a history of status epilepticus
and ASM tapering before entering the study, and 1 in a patient
who never received stimulation with the study device due to
the presence of metal implants in the skull. Worsening of sei-
zures was reported in 2 patients. In addition, 1 patient expe-
rienced a seizure cluster, and 1 patient had a seizure with
fall. One SAE occurred before the stimulation was turned on
(abdominal pain).

A total of 90 AEs reported in 25 of 33 patients (75.6%)
were associated with device implantation (Table 2). Of these,
45 were mild, 39 moderate, and 6 severe. A total of 72 of 90
(80%) had resolved at month 8. There was an increase in the
number of seizures (5), new types of seizures (2), the sever-
ity of seizures (1), and other worsening (1). Of the 7 patients
(21.2%) with headaches, 5 experienced these events within
30 days after device implantation. Psychiatric symptoms
included 2 patients (6.1%) with depressive symptoms (1 with
worsening of a preexisting condition and 1 with symptoms
attributed to COVID-19 pandemic restrictions). Additionally,
memory impairment concomitant with an increase in ASM
dose was reported in 1 patient (3.0%), and 1 patient each

Table 1. Demographic and Clinical Data

Patient characteristic

Total patients
receiving implant
(N = 33)

Sex, No. (%)

Female 15 (45.5)

Male 18 (54.5)

Age, mean (SD) [range], y 34.6 (13.5) [18-75]

Duration of epilepsy, mean (SD) [range], y 20.4 (12.4) [3.2-66.2]

Baseline seizure count per 30 d, median (IQR) 12 (2-147)

No. of antiseizure medications taken prior
to enrollment, mean (SD) [range]

7.8 (4.3) [3-15]

No. of antiseizure medications at baseline,
mean (SD)

3.2 (1.2)

ASM, No. (%)

2 12 (36.4)

3 7 (21.2)

4 11 (33.3)

5 2 (6.1)

6 0 (0.0)

7 1 (3.0)

Prior vagus nerve stimulation, No. (%) 4 (12.1)

Location of seizure onset, No. (%)

Temporal 15 (45.4)

Right 4

Left 11

Frontal 9 (27.3)

Right 4

Left 5

Other 9 (27.3)

Right 4

Left 5

Laterlization of seizure onset, No. (%)

Right 13 (39.4)

Left 20 (60.6)

Abbreviation: ASM, antiseizure medication.
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(3%) reported morning tiredness, which eventually resolved,
and worsening of inner unrest.

Procedure-associated events were reported in 10 of 33 pa-
tients (30.3%) and included headache (3 of 33 [9.1%]), hema-
toma (2 of 33 [6.1%]), and 1 patient each had a complaint of im-
plant site pain, implant site pruritus, device site discomfort,
device site pain, hypoesthesia, procedural headache, proce-
dural pain, musculoskeletal discomfort, and scar pain. Dur-

ing the complete study period, neither a wound nor a device
infection occurred.

Device-associated events were reported in 5 of 33 pa-
tients (15.2%), with 1 patient each reporting administration site
dysesthesia, implant site pruritus, device site discomfort, in-
cision site complication, wound pain, headache, and scar pain.

As part of the safety assessment, questionnaires on mood
and a cognitive test battery were applied. No relevant changes

Figure 3. Study Results and Efficacy End Points of the Pooled Analysis
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in mood as assessed by NDDI-E could be observed, with mean
(SD) scores of 13.0 (1.2) at baseline and 13.3 (1.2) at 8-month
follow-up visit (mean change +0.30). Cognition as assessed by
the EpiTrack tool showed a trend toward improvement, with
mean (SD) scores of 27.7 (2.2) at baseline and 29.1 (2.1) at
8-month follow-up visit (mean change +1.30; P < .10).

Discussion
Results of this pooled analysis of 2 nonrandomized, uncon-
trolled, prospective, open-label studies of a novel neurostimu-
lation device suggest a beneficial association of FCS with sei-
zure frequency in patients with drug-refractory focal epilepsy.
The primary goal of this research was to analyze the safety, per-
formance, and efficacy of a novel device delivering epicranial
FCS in patients with drug refractory focal epilepsy. The study
results suggest class 3 evidence for antiseizure efficacy of this
device.18

The observed reduction of seizure frequency was signifi-
cant with regard to the prospective baseline, and the lower-
limit CI of the observed response rate (34.7%) lies entirely
above the historical sham response rate (16%) observed in
historical controls for sham stimulation in VNS,17 which sug-
gests a better response of patients treated with the novel
neurostimulation device. The time course of changes in sei-
zure frequency during epicranial stimulation showed no
immediate effects after device implantation, which had been
reported as insertional effects following implantation of
intracranial stimulators and amounted to 20% to 25% in the
respective studies.3-5 The progressive seizure reduction dur-
ing FCS treatment, rather, is in line with a gradually mani-
festing neuromodulatory effect. Both responder rate (53.1%;
95% CI, 34.7%-70.9%) and the degree of seizure frequency
reduction (median of 52.0%) in the sixth month of treatment

were comparable with neurostimulation approaches using
VNS,16 responsive neurostimulation5 and deep brain stimu-
lation of the anterior nucleus of the thalamus (ANT-DBS)4

applied in similar patient populations with highly drug-
resistant focal epilepsy.5 Note that seizure reductions
reported in those trials were assessed with blinding at least
in studies on intracranial stimulation, whereas in the
trials reported here, stimulation occurred without blinding.
The seizure reduction observed, however, also compares
favorably with results from a recent prospective, unblinded
registry of ANT-DBS stimulation, which reports a median
seizure frequency reduction by 33.1% after 2 years of
stimulation19 and with pharmacological options resulting
from the unblinded change in ASM.20

Implantation of the novel neurostimulation device was tai-
lored to each of the study patients with the electrode posi-
tioned epicranially according to the location of the respective
predominant epileptic focus. Additional data are needed to
evaluate if antiseizure outcomes associated with epicranial
stimulation are limited to foci on the dorsolateral convexities
or also extend to deep foci via network effects.

Subcutaneous electrode placement allows for the exer-
tion of greater effects on neuronal population dynamics when
compared with transcutaneous electrical stimulation as shown
by both modeling and experimental recordings.8,21 Thus, the
intensities chosen for treatment in the trials reported here were
assumed to have relevant effects on neuronal firing rates at
least on principal neurons in gyral crowns. Stimulation was
performed by a combination of HFS and DLS, combining 2
approaches, which each have been shown to exert antisei-
zure effects in modeling and experimental approaches22,23

as well as under clinical conditions.24,25

Epicranial FCS has low invasiveness, and results suggest
a remarkably positive safety profile. The extracranial position-
ing of the neurostimulation device electrode avoids risks of
(1) intracranial hemorrhage with intracranial stimulation
and (2) unwanted effects of vagus nerve lesioning or
stimulation.4,19,20,26,27 Unlike VNS, FCS from a subgaleal
position remains unperceived by patients when appropriate
stimulation intensities are chosen and is also imperceptible to
others. The tunneling procedure connecting the pulse gen-
erator to the lead is similar to that in VNS and DBS.

AEs reported in the study were mostly moderate or mild
and transient and were frequently associated with the implan-
tation sites (eg, local pain or discomfort in the area of implan-
tation of the electrode or generator). A transient increase in sei-
zure frequency as observed in some patients has also been
reported in other neurostimulation trials,28 as well as in trials
with add-on treatment with ASM.20,29-31 It remains unknown
if this transient increase in seizure frequency was associated
with the stimulation itself or if it reflects spontaneous fluc-
tuations in seizure frequency. During the trial, 6.1% of pa-
tients undergoing FCS reported depressive symptoms, and
3.0% of patients reported memory impairment. Again, it re-
mains unknown if these symptoms are associated with the
stimulation. Similar to responsive intracranial neurostimula-
tion of the epileptic focus,32 these incidences are lower than
those with stimulation of the anterior nuclei of the thalamus

Table 2. Serious and Nonserious Adverse Events Reported
in More Than 5% of Patients

Type of adverse event
Patient, No. (%)
(N = 33)

Seizurea 9 (27.3)

Headache 7 (21.2)

Injury, poisoning, procedural complication 6 (18.2)

Infections (eg, nasopharyngitis) 5 (15.2)

Musculoskeletal symptoms 5 (15.2)

Other general disorders and administrative site
conditions

5 (15.2)

Dizziness 4 (12.1)

Implant site pain 4 (12.1)

Psychiatric symptoms 4 (12.1)

Abdominal pain 3 (9.1)

Gastrointestinal disorder 2 (6.1)

Nausea 2 (6.1)

Skin disorder 2 (6.1)

Status epilepticus 2 (6.1)

Vascular disorder 2 (6.1)

a Worsening of seizure situation.
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(with 14.8% of patients reporting depression, and 13.0% re-
porting memory impairment4). With standardized assess-
ment, mood as reflected by the NDDI-E showed almost un-
changed group scores, and neurocognitive assessment showed
a trend toward improvement. The incidence and type of AEs
associated with the procedure and use of the novel treatment
method presented here thus appear to be favorable in the con-
text of currently available neuromodulation therapies for
patients with drug-refractory epilepsy.33

Limitations
Limitations of the reported data are based on the absence of
a control group; thus, placebo effects or the influence of mea-
sured or unmeasured confounding variables cannot be ruled
out to have contributed to the observed reduction in seizure
frequency. Additional data will be needed for response pre-
diction and for a better understanding of the relative contri-

butions of DCL stimulation and HFS and the best stimulation
parameters.34 Long-term benefits and effects of FCS will be
reported after the completion of ongoing studies.

Conclusions
Results of this pooled analysis of 2 single-arm, nonrandom-
ized, uncontrolled trials suggest that FCS was associated with
a significant reduction in the frequency of seizures. The safety
profile of implantable epicranial stimulation was favorable com-
pared with published safety profiles of alternative neuromodu-
lation or surgical procedures and compared with the risks
associated with uncontrolled seizures. Based on the clinical trial
data, FCS has become available as a Conformité Européenne
(CE)–certified device in Europe as a new treatment option for
patients who experience drug-refractory focal epilepsy.
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